## GCE AS/A level

0976/01 S16-0976-01

# MATHEMATICS - C4 <br> Pure Mathematics 

P.M. FRIDAY, 17 June 2016

1 hour 30 minutes

## ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.


## INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

## INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. The function $f$ is defined by

$$
f(x)=\frac{17+4 x-x^{2}}{(2 x-1)(x-3)^{2}}
$$

(a) Express $f(x)$ in terms of partial fractions.
(b) Use your result to part (a) to find an expression for $f^{\prime}(x)$.
2. (a) (i) Expand $\frac{1}{\sqrt{1+2 x}}$ in ascending powers of $x$ up to and including the term in $x^{2}$.
(ii) State the range of values of $x$ for which your expansion is valid.
(b) Use your expansion in part (a) to find an approximate value for one root of the equation

$$
\begin{equation*}
\frac{6}{\sqrt{1+2 x}}=4+15 x-x^{2} . \tag{2}
\end{equation*}
$$

3. The curve $C$ has equation

$$
x^{4}+2 x^{3} y-3 y^{4}=16
$$

(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x^{3}+3 x^{2} y}{6 y^{3}-x^{3}}$.
(b) Show that there are only two points on $C$ where the gradient of the tangent is -2 . Find the coordinates of each of these two points.
4. (a) The angle $x$ is such that $0^{\circ} \leqslant x \leqslant 180^{\circ}, x \neq 90^{\circ}$.

Given that $x$ satisfies the equation $3 \tan 2 x+16 \cot ^{2} x=0$,
(i) show that $3 \tan ^{3} x-8 \tan ^{2} x+8=0$,
(ii) find all possible values of $x$, giving each answer in degrees, correct to one decimal place.
(b) Express $24 \cos \theta-7 \sin \theta$ in the form $R \cos (\theta+\alpha)$, where $R$ and $\alpha$ are constants with $R>0$ and $0^{\circ}<\alpha<90^{\circ}$.

Hence, find the range of values of $k$ for which the equation

$$
24 \cos \theta-7 \sin \theta=k
$$

has no solutions.
5. The parametric equations of the curve $C$ are

$$
x=\frac{3}{t}, y=4 t .
$$

(a) Show that the tangent to $C$ at the point $P$ with parameter $p$ has equation

$$
\begin{equation*}
3 y=-4 p^{2} x+24 p \tag{4}
\end{equation*}
$$

(b) The tangent to $C$ at the point $P$ passes through the point (1, 9). Show that $P$ can be one of two points. Find the coordinates of each of these two points.
6. (a) Find $\int(2 x+1) \mathrm{e}^{-3 x} \mathrm{~d} x$.
(b) Use the substitution $u=4+5 \tan x$ to evaluate

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{4}} \frac{\sqrt{4+5 \tan x}}{\cos ^{2} x} \mathrm{~d} x \tag{4}
\end{equation*}
$$

7. The value, $£ V$, of a particular car may be modelled as a continuous variable. At time $t$ years, the rate of decrease of $V$ is directly proportional to $V^{3}$.
(a) Write down a differential equation satisfied by $V$.
(b) Given that the initial value of the car is $£ A$, show that

$$
V^{2}=\frac{A^{2}}{b t+1},
$$

where $b$ is a constant.
(c) When $t=2$, the value of the car has fallen to a half of its initial value. Find the value of $t$ when the value of the car will have fallen to a quarter of its initial value.

## TURN OVER

8. The position vectors of the points $A$ and $B$ are given by

$$
\begin{aligned}
& \mathbf{a}=\mathbf{i}+3 \mathbf{j}-3 \mathbf{k}, \\
& \mathbf{b}=3 \mathbf{i}+4 \mathbf{j}-\mathbf{k},
\end{aligned}
$$

respectively.
(a) (i) Write down the vector $\mathbf{A B}$.
(ii) Find the vector equation of the line $A B$.
(b) The vector equation of the line $L$ is given by

$$
\mathbf{r}=-\mathbf{i}+8 \mathbf{j}+p \mathbf{k}+\mu(-2 \mathbf{i}+\mathbf{j}+3 \mathbf{k})
$$

where $p$ is a constant.
(i) Given that the lines $A B$ and $L$ intersect, find the value of $p$.
(ii) Determine whether or not the line $L$ is perpendicular to the vector $6 \mathbf{i}-4 \mathbf{j}+5 \mathbf{k}$, giving a reason for your answer.
9. The region $R$ is bounded by the curve $y=\cos x+\sin x$, the $x$-axis and the lines $x=\frac{\pi}{5}, x=\frac{2 \pi}{5}$. Find the volume of the solid generated when $R$ is rotated through four right angles about the $x$-axis. Give your answer correct to two decimal places.
10. Prove by contradiction the following proposition.

When $x$ is real and $x \neq 0$,

$$
\left|x+\frac{1}{x}\right| \geqslant 2 .
$$

The first two lines of the proof are given below.
Assume that there is a real value of $x$ such that

$$
\left|x+\frac{1}{x}\right|<2 .
$$

Then squaring both sides, we have:

